If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-16/81=0
We multiply all the terms by the denominator
t^2*81-16=0
Wy multiply elements
81t^2-16=0
a = 81; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·81·(-16)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*81}=\frac{-72}{162} =-4/9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*81}=\frac{72}{162} =4/9 $
| 14+4=-3(8x-6) | | Y=12x+-24 | | 2(12x-23)=28 | | 35+180=b | | 4b−–4=20 | | 5x+21=4x+24 | | 15+6=-3(7x-7) | | .25x+.75=1.5 | | -9-8x=-2x(7+4x) | | 5x+2(x+17)=23 | | 2(12x-23)=38 | | 2(12x−23)=38. | | z+(z-6)-2=-`10 | | 12n-6n=-3(10+4n)-8(n-7) | | 3x+7×=40 | | Q+l-10l=2 | | -8x-30=-5x+39 | | -65+9x=19+12x | | 2p −4=4 | | (2)=5+8x, | | 8x-4(x-2)=4 | | 2(b+9)=28 | | –11b+14b−1=–13 | | =5+8x | | 28=2x+(20) | | -12(x-6)=8(x-12)-6x | | 9.09w=1.8 | | 5(6)-2y=24 | | -22+x/4=-9 | | x+1/x=x+1 | | -6+8v=8+10v | | -18q+42-2q-6=96 |